Tourism Time Series Forecast

نویسندگان

  • João Paulo Teixeira
  • Paula Odete Fernandes
چکیده

In this chapter four combinations of input features and the feedforward, cascade forward and recurrent architectures are compared for the task of forecast tourism time series. The input features of the ANNs consist in the combination of the previous 12 months, the index time modeled by two nodes used to the year and month and one input with the daily hours of sunshine (insolation duration). The index time features associated to the previous twelve values of the time series proved its relevance in this forecast task. The insolation variable can improved results with some architectures, namely the cascade forward architecture. Finally, the experimented ANN models/architectures produced a mean absolute percentage error between 4 and 6%, proving the ability of the ANN models based to forecast this time series. Besides, the feedforward architecture behaved better considering validation and test sets, with 4.2% percentage error in test set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seasonality in Tourism and Forecasting Foreign Tourist Arrivals in India

In the present age of globalization, technology-revolution and sustainable development, the presence of seasonality in tourist arrivals is considered as a key policy issue that affects the global tourism industry by creating instability in the demand and revenues. The seasonal component in a time-series distorts the prediction attempts for policy-making. In this context, it is quintessential to...

متن کامل

Modelling and Forecasting Australian Domestic Tourism

In this paper, we model and forecast Australian domestic tourism demand. We use a regression framework to estimate important economic relationships for domestic tourism demand. We also identify the impact of world events such as the 2000 Sydney Olympics and the 2002 Bali bombings on Australian domestic tourism. To explore the time series nature of the data, we use innovation state space models ...

متن کامل

Comparison of Artificial Neural Network Architectures in the Task of Tourism Time Series Forecast

The authors have been developing several models based on artificial neural networks, linear regression models, BoxJenkins methodology and ARIMA models to predict the time series of tourism. The time series consist in the “Monthly Number of Guest Nights in the Hotels” of one region. Several comparisons between the different type models have been experimented as well as the features used at the e...

متن کامل

Hierarchical forecasts for Australian domestic tourism

In this paper we explore the hierarchical nature of tourism demand time series and produce short-term forecasts for Australian domestic tourism. The data and forecasts are organized in a hierarchy based on disaggregating the data for different geographical regions and for different purposes of travel. We consider five approaches to hierarchical forecasting: two variations of the top-down approa...

متن کامل

Effect of seasonality treatment on the forecasting performance of tourism demand models

This study provides a comprehensive comparison of the performance of the commonly used econometric and time-series models in forecasting seasonal tourism demand. The empirical study is carried out based on the demand for outbound leisure tourism by UK residents to seven destination countries: Australia, Canada, France, Greece, Italy, Spain and the USA. In the modelling exercise, the seasonality...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015